
Package: acebayes (via r-universe)
September 7, 2024

Type Package

Title Optimal Bayesian Experimental Design using the ACE Algorithm

Version 1.10

Date 2020-10-04

Author Antony M. Overstall, David C. Woods, Maria Adamou & Damianos
Michaelides

Maintainer Antony M. Overstall <A.M.Overstall@soton.ac.uk>

Description Optimal Bayesian experimental design using the approximate
coordinate exchange (ACE) algorithm. See
<doi:10.18637/jss.v095.i13>.

License GPL-2

Depends R (>= 3.5.0), lhs

Imports Rcpp (>= 0.12.9), compare, randtoolbox, parallel

LinkingTo Rcpp, RcppArmadillo (>= 0.9.100.5.0)

NeedsCompilation yes

Date/Publication 2020-10-05 08:20:03 UTC

Repository https://amo105.r-universe.dev

RemoteUrl https://github.com/cran/acebayes

RemoteRef HEAD

RemoteSha ab55851906a18660d58da27eadfb31534c726d51

Contents
acebayes-package . 2
ace . 5
aceglm . 10
acenlm . 17
aceobjects . 24
assess . 25
assessobjects . 27

1

https://doi.org/10.18637/jss.v095.i13

2 acebayes-package

overstallwoods . 28
plot.ace . 36
plot.assess . 37
utilities . 38

Index 43

acebayes-package Optimal Bayesian Experimental Design using the Approximate Coor-
dinate Exchange (ACE) Algorithm

Description

Finding an optimal Bayesian experimental design (Chaloner & Verdinelli, 1995) involves maximis-
ing an objective function given by the expectation of some appropriately chosen utility function
with respect to the joint distribution of unknown quantities (including responses). This objective
function is usually not available in closed form and the design space can be continuous and of high
dimensionality.

The acebayes package uses Approximate Coordinate Exchange (ACE; Overstall & Woods, 2017)
to maximise an approximation to the expectation of the utility function. In Phase I of the algorithm,
a continuous version of the coordinate exchange algorithm (Meyer & Nachtsheim, 1995) is used
to maximise an approximation to expected utility. The approximation is given by the predictive
mean of a Gaussian process (GP) emulator constructing using a ’small’ number of approximate
evaluations of the expected utility function. In Phase II a point exchange algorithm is used to
consolidate clusters of design points into repeated design points.

Details

Package: acebayes
Version: 1.10
Date: 2020-10-04
Date: 2017-02-09
License: GPL-2

The most important functions are as follows.

1. ace

2. pace

3. aceglm

4. paceglm

5. acenlm

6. pacenlm

acebayes-package 3

The function ace implements both phases of the ACE algorithm. It has two mandatory arguments:
utility (a function specifying the chosen utility function incorporating the joint distribution of
unknown quantities) and start.d (the initial design). The function will return the final design from
the algorithm, along with information to assess convergence. The function pace implements repeti-
tions of the ACE algorithm from different starting designs (as specified by the start.d argument).

The computational time of ace (and pace) is highly dependent on the computational time required to
evaluate the user-supplied function utility. Therefore it is recommended that users take advantage
of R packages such as Rcpp (Eddelbuettel & Francois, 2011), RcppArmadillo (Eddelbuettel &
Sanderson, 2014), or RcppEigen (Bates & Eddelbuettel, 2013), that provide convenient interfaces
to compiled programming languages.

The functions aceglm and acenlm are user-friendly wrapper functions for ace which use the ACE
algorithm to find Bayesian optimal experimental designs for generalised linear models and non-
linear models, respectively. As special cases, both of these functions can find pseudo-Bayesian
optimal designs. The functions paceglm and pacenlm implement repetitions of the ACE algorithm
from different starting designs (as specified by the start.d argument) for generalised linear models
and non-linear models, respectively.

For more details on the underpinning methodology, see Overstall & Woods (2017), and for more
information on the acebayes package, see Overstall et al (2020).

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

Maintainer: Antony. M.Overstall <A.M.Overstall@soton.ac.uk>

References

Bates, D. & Eddelbuettel, D. (2013). Fast and Elegant Numerical Linear Algebra Using the RcppEigen
Package. Journal of Statistical Software, 52(5), 1-24. https://www.jstatsoft.org/v52/i05/

Chaloner, K. & Verdinelli, I. (1995). Bayesian Experimental Design: A Review. Statistical Science,
10, 273-304.

Eddelbuettel, D. & Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statis-
tical Software, 40(8), 1-18. https://www.jstatsoft.org/v40/i08/

Eddelbuettel, D. & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-performance
C++ linear algebra. Computational Statistics and Data Analysis, 71, 1054-1063.

Meyer, R. & Nachtsheim, C. (1995). The Coordinate Exchange Algorithm for Constructing Exact
Optimal Experimental Designs. Technometrics, 37, 60-69.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

Overstall, A.M., Woods, D.C. & Adamou, M. (2020). acebayes: An R Package for Bayesian Opti-
mal Design of Experiments via Approximate Coordinate Exchange. Journal of Statistical Software,
95 (13), 1-33 https://www.jstatsoft.org/v095/i13/

https://www.jstatsoft.org/v52/i05/
https://www.jstatsoft.org/v40/i08/
https://www.jstatsoft.org/v095/i13/

4 acebayes-package

Examples

This example uses aceglm to find a pseudo-Bayesian D-optimal design for a
first-order logistic regression model with 6 runs 4 factors (i.e. 5 parameters).
The priors are those used by Overstall & Woods (2017), i.e. a uniform prior
distribution is assumed for each parameter. The design space for each coordinate
is [-1, 1].

set.seed(1)
Set seed for reproducibility.

n<-6
Specify the sample size (number of runs).

start.d<-matrix(2 * randomLHS(n = n,k = 4) - 1, nrow = n, ncol = 4,
dimnames = list(as.character(1:n), c("x1", "x2", "x3", "x4")))
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.

low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
Lower and upper limits of the uniform prior distributions.

prior<-function(B){
t(t(6*matrix(runif(n = 5*B), ncol = 5)) + low)}
Create a function which specifies the prior. This function will return a
B by 5 matrix where each row gives a value generated from the prior
distribution for the model parameters.

example<-aceglm(formula = ~ x1 + x2 + x3 + x4, start.d = start.d, family = binomial,
prior = prior , criterion = "D", method= "MC", B = c(1000,1000), N1 = 1, N2 = 0,
upper = 1)
Call the aceglm function which implements the ACE algorithm requesting
only one iteration of Phase I and zero iterations of Phase II (chosen for
illustrative purposes). The Monte Carlo sample size for the comparison
procedure (B[1]) is set to 1000 (chosen again for illustrative purposes).

example
Print out a short summary.

#Generalised Linear Model
#Criterion = Bayesian D-optimality
#
#Number of runs = 6
#
#Number of factors = 4
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:02

ace 5

The final design found is:

example$phase2.d

x1 x2 x3 x4
#1 -0.4735783 0.12870470 -0.75064318 1.0000000
#2 -0.7546841 0.78864527 0.58689270 0.2946728
#3 -0.7463834 0.33548985 -0.93497463 -0.9573198
#4 0.4446617 -0.29735212 0.74040030 0.2182800
#5 0.8459424 -0.41734194 -0.07235575 -0.4823212
#6 0.6731941 0.05742842 1.00000000 -0.1742566

ace Approximate Coordinate Exchange (ACE) Algorithm

Description

These functions implement the approximate coordinate exchange (ACE) algorithm (Overstall &
Woods, 2017) for finding optimal Bayesian experimental designs by maximising an approximation
to an intractable expected utility function.

Usage

ace(utility, start.d, B, Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
limits = NULL, progress = FALSE, binary = FALSE, deterministic = FALSE)

acephase1(utility, start.d, B, Q = 20, N1 = 20, lower, upper, limits = NULL,
progress = FALSE, binary = FALSE, deterministic = FALSE)

acephase2(utility, start.d, B, N2 = 100, progress = FALSE, binary = FALSE,
deterministic = FALSE)

pace(utility, start.d, B, Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
limits = NULL, binary = FALSE, deterministic = FALSE, mc.cores = 1,
n.assess = 20)

Arguments

utility A function with two arguments: d and B.
For a Monte Carlo approximation (deterministic = FALSE), it should return
a vector of length B where each element gives the value of the utility function
for design d, for a value generated from the joint distribution of all unknown
quantities. The mean of the elements of this vector provides a Monte Carlo
approximation to the expected utility for design d.
For a deterministic approximation (deterministic = TRUE), it should return a
scalar giving the approximate value of the expected utility for design d. In this
latter case, the argument B can be a list containing tuning parameters for the
deterministic approximation. If B is not required, the utility function must still
accept the argument.

6 ace

start.d For ace, acephase1 and acephase2, an n by k matrix specifying the initial
design for the ACE algorithm.
For pace, a list with each element being an n by k matrix specifying the initial
design for each repetition of the ACE algorithm.

B An argument for controlling the approximation to the expected utility.
For a Monte Carlo approximation (deterministic = FALSE), a vector of length
two specifying the size of the Monte Carlo samples, generated from the joint
distribution of unknown quantities. The first sample size, B[1], gives the sample
size to use in the comparison procedures, and the second sample size, B[2],
gives the sample size to use for the evaluations of Monte Carlo integration that
are used to fit the Gaussian process emulator. If missing when deterministic
= FALSE, the default value is c(20000,1000).
For a deterministic approximation (deterministic = TRUE), then B may be a
list of length two containing any necessary tuning parameters for the expected
utility calculations for the comparison and emulation steps.

Q An integer specifying the number of evaluations of the approximate expected
utility that are used to fit the Gaussian process emulator. The default value is 20.

N1 An integer specifying the number of iterations of Phase I of the ACE algorithm
(the coordinate exchange phase). The default value is 20.

N2 An integer specifying the number of iterations of Phase II of the ACE algorithm
(the point exchange phase). The default value is 100.

lower An argument specifying the bounds on the design space. This argument can
either be a scalar or a matrix of the same dimension as the argument start.d
which specifies the lower limits of all coordinates of the design space. The
default value is -1.

upper An argument specifying the bounds on the design space. This argument can
either be a scalar or a matrix of the same dimension as the argument start.d
which specifies the upper limits of all coordinates of the design space. The
default value is 1.

limits An argument specifying the grid over which to maximise the Gaussian process
emulator for the expected utility function. It should be a function with three
arguments: i, j and d which generates a one-dimensional grid for the ijth co-
ordinate of the design when the current design is d. The default value is NULL
which generates values uniformly on the interval (lower[i,j],upper[i,j])
or (lower,upper) depending on whether the arguments lower and upper are
matrices or scalars, respectively.

progress A logical argument indicating whether the iteration number and other informa-
tion detailing the progress of the algorithm should be printed. The default value
is FALSE.

binary A logical argument indicating whether the utility function has binary or con-
tinuous output. In some cases, the utility function is an indicator function of
some event giving binary output. The expected utility function will then be the
expected posterior probability of the event. Utility functions such as Shannon
information gain and negative squared error loss give continuous output. The
type of output guides the choice of comparison procedure used in the ACE algo-
rithm. The default value is FALSE, indicating the utility function has continuous
output.

ace 7

deterministic A logical argument indicating if a Monte Carlo (FALSE, default) or deterministic
(TRUE) approximation to the expected utility is being used.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one (the default), and parallelisation requires at
least two cores. See mclapply for more information and warnings for mc.cores
> 1.

n.assess If deterministic = FALSE, the approximate expected utility for the design from
each repetition of the ACE algorithm will be calculated n.assess times. The
terminal design returned will be the design with the largest mean approximate
expected utility calculated over the n.assess approximations.

Details

Finding an optimal Bayesian experimental design (Chaloner & Verdinelli, 1995) involves maximis-
ing an objective function given by the expectation of some appropriately chosen utility function
with respect to the joint distribution of unknown quantities (including responses). This objective
function is usually not available in closed form and the design space can be continuous and of high
dimensionality.

Overstall & Woods (2017) proposed the approximate coordinate exchange (ACE) algorithm to ap-
proximately maximise the expectation of the utility function. ACE consists of two phases.

Phase I uses a continuous version of the coordinate exchange algorithm (Meyer & Nachtsheim,
1995) to maximise an approximation to the expected utility. Very briefly, the approximate expected
utility is sequentially maximised over each one-dimensional element of the design space. The ap-
proximate expected utility is given by the predictive mean of a Gaussian process (GP) regression
model (also known as an emulator or surrogate) fitted to a ’small’ number (argument Q) of evalua-
tions of either a Monte Carlo (MC) or deterministic (e.g. quadrature) approximation to the expected
utility (the MC sample size or arguments for the deterministic approximation are given by B). A GP
emulator is a statistical model and, similar to all statistical models, can be an inadequate representa-
tion of the underlying process (i.e. the expected utility). Instead of automatically accepting the new
design given by the value that maximises the GP emulator, for MC approximations a Bayesian hy-
pothesis test, independent of the GP emulator, is performed to assess whether the expected utility of
the new design is larger than the current design. For deterministic approximations, the approximate
expected utility is calculated for the new design, and compared to that for the current design.

Phase I tends to produce clusters of design points. This is where, for example, two design points
are separated by small Euclidean distance. Phase II allows these points to be consolidated into a
single repeated design point by using a point exchange algorithm (e.g Gotwalt et al., 2009) with a
candidate set given by the final design from Phase I. In the same way as Phase I, comparisons of
the expected loss between two designs is made on the basis of either a Bayesian hypothesis test or
a direct comparison of deterministic approximations.

The original Bayesian hypothesis test proposed by Overstall & Woods (2017) is appropriate for
utility functions with continuous output. Overstall et al. (2017) extended the idea to utility functions
with binary output, e.g. the utility function is an indicator function for some event. The type of test
can be specified by the argument binary.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial de-
signs. The function pace will implement this where the initial designs are given by a list via the ar-
gument start.d. On the completion of the repetitions of ACE, pace will approximate the expected

8 ace

utility for all final designs and return the design (the terminal design) with the largest approximate
expected utility.

Value

The function will return an object of class "ace" (for functions ace, acephase1 and acephase2) or
"pace" (for function "pace") which is a list with the following components:

utility The argument utility.

start.d The argument start.d.

phase1.d The design found from Phase I of the ACE algorithm (only for ace, acephase1
and acephase2).

phase2.d The design found from Phase II of the ACE algorithm (only for ace, acephase1
and acephase2)..

phase1.trace A vector containing the approximated expected utility of the current design at
each stage of Phase I of the ACE algorithm. This can be used to assess con-
vergence for MC approximations. If deterministic = FALSE, this will be the
mean of a call to utility with d being the current design and B being equal
to the argument B[1]. If deterministic = TRUE, this will be a call to utility
with d being the current design.
For pace, this will be phase1.trace for the terminal design.

phase2.trace A vector containing the approximated expected utility of the current design at
each stage of Phase II of the ACE algorithm. This can be used to assess con-
vergence for MC approximations. If deterministic = FALSE, this will be the
mean of a call to utility with d being the current design and B being equal
to the argument B[1]. If deterministic = TRUE, this will be a call to utility
with d being the current design.
For pace, this will be phase2.trace for the terminal design.

B The argument B.

Q The argument Q.

N1 The argument N1.

N2 The argument N2.

glm If the object is a result of a direct call to ace then this is FALSE.

nlm If the object is a result of a direct call to ace then this is FALSE.

criterion If the object is a result of a direct call to ace then this is "NA".

prior If the object is a result of a direct call to ace then this is "NA".

time Computational time (in seconds) to run the ACE algorithm.

binary The argument binary.

deterministic The argument deterministic.

d The terminal design (pace only).

eval If deterministic = FALSE, a vector containing n.assess approximations to
the expected utility for the terminal design (pace only).
If deterministic = TRUE, a scalar giving the approximate expected utility for
the terminal design (pace only).

ace 9

final.d A list of the same length as the argument start.d, where each element is the
final design (i.e. phase2.d) for each repetition of the ACE algorithm (pace
only).

besti A scalar indicating which repetition of the ACE algorithm resulted in the termi-
nal design (pace only).

Note

For more details on the R implementation of the utility function used in the Examples section, see
utilcomp18bad.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Chaloner, K. & Verdinelli, I. (1995). Bayesian Experimental Design: A Review. Statistical Science,
10, 273-304.

Gotwalt, C., Jones, B. & Steinberg, D. (2009). Fast Computation of Designs Robust to Parameter
Uncertainty for Nonlinear Settings. Technometrics, 51, 88-95.

Meyer, R. & Nachtsheim, C. (1995). The Coordinate Exchange Algorithm for Constructing Exact
Optimal Experimental Designs. Technometrics, 37, 60-69.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

Overstall, A.M., McGree, J.M. & Drovandi, C.C. (2018). An approach for finding fully Bayesian
optimal designs using normal-based approximations to loss functions. Statistics and Computing,
28(2), 343-358.

Examples

set.seed(1)
Set seed for reproducibility.

This example involves finding a pseudo-Bayesian D-optimal design for a
compartmental model with n = 18 runs. There are three parameters.
Two parameters have uniform priors and the third has a prior
point mass. For more details see Overstall & Woods (2017).

start.d<-optimumLHS(n = 18, k = 1)
Create an initial design.

Using a MC approximation
example1<-ace(utility = utilcomp18bad, start.d = start.d, N1 = 1, N2 = 2, B = c(100, 20))
Implement the ACE algorithm with 1 Phase I iterations and 2 Phase II
iterations. The Monte Carlo sample sizes are 100 (for comparison) and 20 for
fitting the GP emulator.

10 aceglm

example1
Produce a short summary.

#User-defined model & utility
#
#Number of runs = 18
#
#Number of factors = 1
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 2
#
#Computer time = 00:00:00

mean(utilcomp18bad(d = example1$phase2.d, B = 100))
Calculate an approximation to the expected utility for the final design.
Should get:

#[1] 9.254198

Not run:
plot(example1)
Produces a trace plot of the current value of the expected utility. This
can be used to assess convergence.

End(Not run)

aceglm Approximate Coordinate Exchange (ACE) Algorithm for Generalised
Linear Models

Description

Functions implementing the approximate coordinate exchange (ACE) algorithm (Overstall & Woods,
2017) for finding Bayesian optimal experimental designs for generalised linear models (GLMs).

Usage

aceglm(formula, start.d, family, prior, B,
criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1,
upper = 1, progress = FALSE, limits = NULL)

paceglm(formula, start.d, family, prior, B,
criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1,
upper = 1, limits = NULL, mc.cores = 1, n.assess = 20)

aceglm 11

Arguments

formula An object of class "formula": a symbolic description of the model. The terms
should correspond to the column names of the argument start.d.

start.d For aceglm, an n by k matrix, with column names used by the argument formula,
specifying the initial design for the ACE algorithm.
For paceglm, a list with each element being an n by k matrix, with column
names used by the argument formula, specifying the initial design for each
repetition of the ACE algorithm.

family A description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or the
result of a call to a family function. (See family for details of family functions.)

prior An argument specifying the prior distribution.
For method = "MC", a function with one argument: B; a scalar integer. This
function should return a B by p matrix, with p the number of model parameters,
containing a random sample from the prior distribution of the parameters. The
value of p should correspond to the number of terms specified by the formula
argument.
For method = "quadrature", a list specifying a normal or uniform prior for the
model parameters. For a normal prior distribution, the list should have named
entries mu and sigma2 specifying the prior mean and variance-covariance ma-
trix. The prior mean may be specified as a scalar, which will then be replicated
to form an vector of common prior means, or a vector of length p. The prior
variance-covariance matrix may be specified as either a scalar common variance
or a vector of length p of variances (for independent prior distributions) or as
a p by p matrix. For a uniform prior distribution, the list should have a named
entry support, a 2 by p matrix with each column giving the lower and upper
limits of the support of the independent continuous uniform distribution for the
corresponding parameter.

B An optional argument for controlling the approximation to the expected utility.
It should be a vector of length two.
For method = "MC", it specifies the size of the Monte Carlo samples, generated
from the joint distribution of unknown quantities. The first sample size, B[1],
gives the sample size to use in the comparison procedures, and the second sam-
ple size, B[2], gives the sample size to use for the evaluations of Monte Carlo
integration that are used to fit the Gaussian process emulator. If left unspecified,
the default value is c(20000,1000).
For method = "quadrature", it specifies the tuning parameters (numbers of ra-
dial abscissas and random rotations) for the implemented quadrature method;
see Details for more information. If left unspecified, the default value is c(2,
8).

criterion An optional character argument specifying the utility function. There are cur-
rently seven utility functions implemented as follows:

1. pseudo-Bayesian D-optimality (criterion = "D");
2. pseudo-Bayesian A-optimality (criterion = "A");
3. pseudo-Bayesian E-optimality (criterion = "E").

12 aceglm

4. Shannon information gain with Monte Carlo (MC) approximation to marginal
likelihood (criterion = "SIG");

5. Shannon information gain with normal-based Laplace approximation to
marginal likelihood (criterion = "SIG-Norm");

6. negative squared error loss with importance sampling approximation to
posterior mean (criterion = "NSEL");

7. negative squared error loss with normal-based approximation to posterior
mean (criterion = "NSEL-Norm");

If left unspecified, the default is "D" denoting pseudo-Bayesian D-optimality.
See Details for more information.

method An optional character argument specifying the method of approximating the
expected utility function. Current choices are method = "quadrature" for a de-
terministic quadrature approximation and method = "MC" for a stochastic Monte
Carlo approximation. The first of these choices is only available when the ar-
gument criterion = "A", "D" or "E". The second choice is available for all
possible values of the argument criterion. If left unspecified, the argument
defaults to "quadrature" for criterion = "A", "D" or "E" and to "MC" other-
wise. See Details for more information.

Q An integer specifying the number of evaluations of the approximate expected
utility that are used to fit the Gaussian process emulator. The default value is 20.

N1 An integer specifying the number of iterations of Phase I of the ACE algorithm
(the coordinate exchange phase). The default value is 20.

N2 An integer specifying the number of iterations of Phase II of the ACE algorithm
(the point exchange phase). The default value is 100.

lower An argument specifying the design space. This argument can either be a scalar
or a matrix of the same dimension as the argument start.d which specifies the
lower limits of all coordinates of the design space. The default value is -1.

upper An argument specifying the design space. This argument can either be a scalar
or a matrix of the same dimension as the argument start.d which specifies the
upper limits of all coordinates of the design space. The default value is 1.

progress A logical argument indicating whether the iteration number and other informa-
tion detailing the progress of the algorithm should be printed. The default value
is FALSE.

limits An argument specifying the grid over which to maximise the Gaussian process
emulator for the expected utility function. It should be a function with three
arguments: i, j and d which generates a one-dimensional grid for the ijth co-
ordinate of the design when the current design is d. The default value is NULL
which generates values uniformly on the interval (lower[i,j],upper[i,j])
or (lower,upper) depending on whether the arguments lower and upper are
matrices or scalars, respectively.

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one (the default), and parallelisation requires at
least two cores. See mclapply for more information and warnings for mc.cores
> 1.

aceglm 13

n.assess If method = "MC", the approximate expected utility for the design from each
repetition of the ACE algorithm will be calculated n.assess times. The terminal
design returned will be the design with the largest mean approximate expected
utility calculated over the n.assess approximations.

Details

The aceglm function implements the ACE algorithm to find designs for the class of generalised
linear models (GLMs) for certain cases of utility function meaning the user does not have to write
their own utility function.

Two utility functions are implemented.

1. Shannon information gain (SIG)
The utility function is

uSIG(d) = π(θ|y, d)− π(θ),

where π(θ|y, d) and π(θ) denote the posterior and prior densities of the parameters θ, respec-
tively.

2. Negative squared error loss (NSEL)
The utility function is

uNSEL(d) = − (θ − E(θ|y, d))T (θ − E(θ|y, d)) ,

where E(θ|y, d) denotes the posterior mean of θ.

In both cases the utility function is not available in closed form due to the analytical intractability
of either the posterior distribution (for SIG) or the posterior mean (for NSEL). The acebayes pack-
age implements two approximations to both utility functions. If criterion = "SIG" or criterion
= "NSEL" then sampling-based Monte Carlo or importance sampling approximations will be em-
ployed. This was the original approach used by Overstall & Woods (2017). If criterion =
"SIG-Norm" or criterion = "NSEL-Norm" then approximations based on approximate normality
of the posterior (Overstall et al., 2017) will be used.

The normal approximation to the posterior can be taken further leading to the approximation by
some scalar function of the Fisher information matrix, I(θ; d), which only depends on θ (Chaloner
& Verdinelli, 1995). In the case of SIG, the approximate utility is given by

uD(d) = log |I(θ; d)|,

and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate
utility is given by

uA(d) = −tr
{
I(θ; d)−1

}
with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used un-
der the frequentist approach to optimal experimental design and so to complete the usual set, the
following utility for finding a pseudo-Bayesian E-optimal design is also implemented:

uE(d) = min e (I(θ; d)) ,

where e() denotes the function that calculates the eigenvalues of its argument.

The expected utilities can be approximated using Monte Carlo methods (method = "MC" for all
criteria) or using a deterministic quadrature method (method = "quadrature", implemented for the

14 aceglm

D, A and E criteria). The former approach approximates the expected utility via sampling from
the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997)
and B[1] specifies the number, nr, of radial abscissas and B[2] specifies the number, nq , of random
rotations. Larger values of nr will produce more accurate, but also more computationally expensive,
approximations. See Gotwalt et al. (2009) for further details.

Note that the utility functions for SIG and NSEL are currently only implemented for logistic re-
gression, i.e. family = binomial, or Poisson regression, i.e. family = poisson(link="log"),
whereas the utility functions for pseudo-Bayesian designs are implemented for generic GLM fami-
lies.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial de-
signs. The function paceglm will implement this where the initial designs are given by a list via
the argument start.d. On the completion of the repetitions of ACE, paceglm will approximate
the expected utility for all final designs and return the design (the terminal design) with the largest
approximate expected utility.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return an object of class "ace" (for aceglm) or "pace" (for paceglm) which is a
list with the following components:

utility The utility function resulting from the choice of arguments.

start.d The argument start.d.

phase1.d The design found from Phase I of the ACE algorithm.

phase2.d The design found from Phase II of the ACE algorithm.

phase1.trace A vector containing the evaluations of the approximate expected utility of the
current design at each stage of Phase I of the ACE algorithm. This can be used
to assess convergence.

phase2.trace A vector containing the evaluations of the approximate expected utility of the
current design at each stage of Phase II of the ACE algorithm. This can be used
to assess convergence.

B The argument B.

Q The argument Q.

N1 The argument N1.

N2 The argument N2.

glm If the object is a result of a direct call to aceglm then this is TRUE.

nlm This will be FALSE.

criterion If the object is a result of a direct call to aceglm then this is the argument
criterion.

method If the object is a result of a direct call to aceglm then this is the argument method.

prior If the object is a result of a direct call to aceglm then this is the argument prior.

family If the object is a result of a direct call to aceglm then this is the argument family.

aceglm 15

formula If the object is a result of a direct call to acenlm then this is the argument
formula.

time Computational time (in seconds) to run the ACE algorithm.

binary The argument binary. Will be FALSE for the utility functions currently imple-
mented.

d The terminal design (paceglm only).

eval If deterministic = "MC", a vector containing n.assess approximations to the
expected utility for the terminal design (paceglm only).
If deterministic = "quadrature", a scalar giving the approximate expected
utility for the terminal design (paceglm only).

final.d A list of the same length as the argument start.d, where each element is the
final design (i.e. phase2.d) for each repetition of the ACE algorithm (paceglm
only).

besti A scalar indicating which repetition of the ACE algorithm resulted in the termi-
nal design (paceglm only).

Note

These are wrapper functions for ace and pace.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Chaloner, K. & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science,
10, 273-304.

Gotwalt, C. M., Jones, B. A. & Steinberg, D. M. (2009). Fast computation of designs robust to
parameter uncertainty for nonlinear settings. Technometrics, 51, 88-95.

Meyer, R. & Nachtsheim, C. (1995). The coordinate exchange algorithm for constructing exact
optimal experimental designs. Technometrics, 37, 60-69.

Monahan, J. and Genz, A. (1997). Spherical-radial integration rules for Bayesian computation,”
Journal of the American Statistical Association, 92, 664–674.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

Overstall, A.M., McGree, J.M. & Drovandi, C.C. (2018). An approach for finding fully Bayesian
optimal designs using normal-based approximations to loss functions. Statistics and Computing,
28(2), 343-358.

See Also

ace, acenlm, pace, pacenlm.

16 aceglm

Examples

This example uses aceglm to find a Bayesian D-optimal design for a
first order logistic regression model with 6 runs 4 factors. The priors are
those used by Overstall & Woods (2017), with each of the five
parameters having a uniform prior. The design space for each coordinate is [-1, 1].

set.seed(1)
Set seed for reproducibility.

n<-6
Specify the sample size (number of runs).

start.d<-matrix(2 * randomLHS(n = n,k = 4) - 1,nrow = n,ncol = 4,
dimnames = list(as.character(1:n), c("x1", "x2", "x3", "x4")))
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.

low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
Lower and upper limits of the uniform prior distributions.

prior<-function(B){
t(t(6*matrix(runif(n = 5 * B),ncol = 5)) + low)}
Create a function which specifies the prior. This function will return a
B by 5 matrix where each row gives a value generated from the prior
distribution for the model parameters.

example1<-aceglm(formula=~x1+x2+x3+x4, start.d = start.d, family = binomial,
prior = prior, method = "MC", N1 = 1, N2 = 0, B = c(1000, 1000))
Call the aceglm function which implements the ACE algorithm requesting
only one iteration of Phase I and zero iterations of Phase II. The Monte
Carlo sample size for the comparison procedure (B[1]) is set to 100.

example1
Print out a short summary.

#Generalised Linear Model
#Criterion = Bayesian D-optimality
#Formula: ~x1 + x2 + x3 + x4
#
#Family: binomial
#Link function: logit
#
#Method: MC
#
#B: 1000 1000
#
#Number of runs = 6
#
#Number of factors = 4
#
#Number of Phase I iterations = 1

acenlm 17

#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:01

example1$phase2.d
Look at the final design.

x1 x2 x3 x4
#1 -0.4735783 0.12870470 -0.75064318 1.0000000
#2 -0.7546841 0.78864527 0.58689270 0.2946728
#3 -0.7463834 0.33548985 -0.93497463 -0.9573198
#4 0.4446617 -0.29735212 0.74040030 0.2182800
#5 0.8459424 -0.41734194 -0.07235575 -0.4823212
#6 0.6731941 0.05742842 1.00000000 -0.1742566

prior2 <- list(support = rbind(low, upp))
A list specifying the parameters of the uniform prior distribution

example2<-aceglm(formula = ~ x1 +x2 + x3 + x4, start.d = start.d, family = binomial,
prior = prior2, N1 = 1, N2 = 0)
Call the aceglm function with the default method of "quadrature"

example2$phase2.d
Final design

x1 x2 x3 x4
#1 -0.4647271 0.07880018 -0.94648750 1.0000000
#2 -0.7102715 0.79827332 0.59848578 0.5564422
#3 -0.7645090 0.39778176 -0.74342036 -1.0000000
#4 0.4514632 -0.33687477 0.55066110 0.3994593
#5 0.7913559 -0.41856994 0.01321035 -0.8848135
#6 0.6337306 0.11578522 1.00000000 1.0000000

mean(example1$utility(d = example1$phase2.d, B = 20000))
#[1] -11.61105
mean(example2$utility(d = example2$phase2.d, B = 20000))
#[1] -11.19737
Compare the two designs using the Monte Carlo approximation

acenlm Approximate Coordinate Exchange (ACE) Algorithm for Non-Linear
Models

Description

Functions implementing the approximate coordinate exchange algorithm (Overstall & Woods, 2017)
for finding optimal Bayesian designs for non-linear regression models.

18 acenlm

Usage

acenlm(formula, start.d, prior, B, criterion = c("D", "A", "E", "SIG", "NSEL"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
progress = FALSE, limits = NULL)

pacenlm(formula, start.d, prior, B, criterion = c("D", "A", "E", "SIG", "NSEL"),
method = c("quadrature", "MC"), Q = 20, N1 = 20, N2 = 100, lower = -1, upper = 1,
limits = NULL, mc.cores = 1, n.assess = 20)

Arguments

formula An object of class "formula": a symbolic description of the model. The terms
should correspond to the column names of the argument start.d and the argu-
ment prior.

start.d For aceglm, an n by k matrix, with column names used by the argument formula,
specifying the initial design for the ACE algorithm.
For paceglm, a list with each element, an n by k matrix, with column names
used by the argument formula, specifying the initial design for each repetition
of the ACE algorithm.

prior An argument specifying the prior distribution.
For method = "MC", a function with one argument: B; a scalar integer. This func-
tion should return a B by p matrix (or p+1 for criterion = "SIG" or criterion
= "NSEL"), with p the number of model parameters, containing a random sam-
ple from the prior distribution of the parameters. The value of p should cor-
respond to the number of terms specified by the formula argument. The col-
umn names must match the names of parameters in the formula argument.
For criterion="SIG" or criterion="NSEL", an extra column (named sig2)
should contain a sample from the prior distribution of the error variance.
For method = "quadrature", a list specifying a normal or uniform prior for the
model parameters. For a normal prior distribution, the list should have named
entries mu and sigma2 specifying the prior mean and variance-covariance ma-
trix. The prior mean may be specified as a scalar, which will then be replicated
to form an vector of common prior means, or a vector of length p. The prior
variance-covariance matrix may be specified as either a scalar common variance
or a vector of length p of variances (for independent prior distributions) or as a p
by p matrix. The names attribute of mu must match the names of the parameters
in the formula argument. For a uniform prior distribution, the list should have
a named entry support, a 2 by p matrix with each column giving the lower and
upper limits of the support of the independent continuous uniform distribution
for the corresponding parameter. The column names of support must match the
names of parameters in the formula argument.

B An optional argument for controlling the approximation to the expected utility.
It should be a vector of length two.
For criterion = "MC", it specifies the size of the Monte Carlo samples, gen-
erated from the joint distribution of unknown quantities. The first sample size,
B[1], gives the sample size to use in the comparison procedures, and the second
sample size, B[2], gives the sample size to use for the evaluations of Monte

acenlm 19

Carlo integration that are used to fit the Gaussian process emulator. If left un-
specified, the default value is c(20000,1000).
For criterion = "quadrature", it specifies the tuning parameters (numbers of
radial abscissas and random rotations) for the implemented quadrature method;
see Details for more information. If left unspecified, the default value is c(2,
8).

criterion An optional character argument specifying the utility function. There are cur-
rently five utility functions implemented consisting of

1. pseudo-Bayesian D-optimality (criterion = "D");
2. pseudo-Bayesian A-optimality (criterion = "A");
3. pseudo-Bayesian E-optimality (criterion = "E");
4. Shannon information gain (criterion = "SIG");
5. negative squared error loss (criterion = "NSEL").

The default value is "D" denoting pseudo-Bayesian D-optimality. See Details
for more information.

method An optional character argument specifying the method of approximating the
expected utility function. Current choices are method = "quadrature" for a de-
terministic quadrature approximation and method = "MC" for a stochastic Monte
Carlo approximation. The first of these choices is only available when the ar-
gument criterion = "A", "D" or "E". The second choice is available for all
possible values of the argument criterion. If left unspecified, the argument
defaults to "quadrature" for criterion = "A", "D" or "E" and to "MC" other-
wise. See Details for more information.

Q An integer specifying the number of evaluations of the approximate expected
utility that are used to fit the Gaussian process emulator. The default value is 20.

N1 An integer specifying the number of iterations of Phase I of the ACE algorithm
(the coordinate exchange phase). The default value is 20.

N2 An integer specifying the number of iterations of Phase II of the ACE algorithm
(the point exchange phase). The default value is 100.

lower An argument specifying the design space. This argument can either be a scalar
or a matrix of the same dimension as the argument start.d which specifies the
lower limits of all coordinates of the design space. The default value is -1.

upper An argument specifying the design space. This argument can either be a scalar
or a matrix of the same dimension as the argument start.d which specifies the
upper limits of all coordinates of the design space. The default value is 1.

progress A logical argument indicating whether the iteration number should be printed.
The default value is FALSE.

limits An argument specifying the grid over which to maximise the Gaussian process
emulator for the expected utility function. It should be a function with three
arguments: i, j and d which generates a one-dimensional grid for the ijth co-
ordinate of the design when the current design is d. The default value is NULL
which generates values uniformly on the interval (lower[i,j],upper[i,j])
or (lower,upper) depending on whether the arguments lower and upper are
matrices or scalars, respectively.

20 acenlm

mc.cores The number of cores to use, i.e. at most how many child processes will be run
simultaneously. Must be at least one (the default), and parallelisation requires at
least two cores. See mclapply for more information and warnings for mc.cores
> 1.

n.assess If method = "MC", the approximate expected utility for the design from each
repetition of the ACE algorithm will be calculated n.assess times. The terminal
design returned will be the design with the largest mean approximate expected
utility calculated over the n.assess approximations.

Details

The acenlm function implements the ACE algorithm to find designs for general classes of nonlinear
regression models with identically and independently normally distributed errors meaning the user
does not have to write their own utility function.

Two utility functions are implemented.

1. Shannon information gain (SIG)
The utility function is

uSIG(d) = π(θ|y, d)− π(θ),

where π(θ|y, d) and π(θ) denote the posterior and prior densities of the parameters θ, respec-
tively.

2. Negative squared error loss (NSEL)
The utility function is

uNSEL(d) = − (θ − E(θ|y, d))T (θ − E(θ|y, d)) ,

where E(θ|y, d) denotes the posterior mean of θ.

In both cases the utility function is not available in closed form due to the analytical intractability of
either the posterior distribution (for SIG) or the posterior mean (for NSEL). Sampling-based Monte
Carlo or importance sampling approximations will be employed. This was the original approach
used by Overstall & Woods (2017).

A normal approximation to the posterior can be taken leading to the approximation by some scalar
function of the Fisher information matrix, I(θ; d), which only depends on θ (Chaloner & Verdinelli,
1995). In the case of SIG, the approximate utility is given by

uD(d) = log |I(θ; d)|,

and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate
utility is given by

uA(d) = −tr
{
I(θ; d)−1

}
with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used un-
der the frequentist approach to optimal experimental design and so to complete the usual set, the
following utility for finding a pseudo-Bayesian E-optimal design is also implemented:

uE(d) = min e (I(θ; d)) ,

where e() denotes the function that calculates the eigenvalues of its argument.

acenlm 21

The expected utilities can be approximated using Monte Carlo methods (method = "MC" for all
criteria) or using a deterministic quadrature method (method = "quadrature", implemented for the
D, A and E criteria). The former approach approximates the expected utility via sampling from
the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997)
and B[1] specifies the number, nr, of radial abscissas and B[2] specifies the number, nq , of random
rotations. Larger values of nr will produce more accurate, but also more computationally expensive,
approximations. See Gotwalt et al. (2009) for further details.

Similar to all coordinate exchange algorithms, ACE should be repeated from different initial de-
signs. The function pacenlm will implement this where the initial designs are given by a list via
the argument start.d. On the completion of the repetitions of ACE, pacenlm will approximate
the expected utility for all final designs and return the design (the terminal design) with the largest
approximate expected utility.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return an object of class "ace" (for acenlm) or "pace" (for pacenlm) which is a
list with the following components:

utility The utility function resulting from the choice of arguments.

start.d The argument start.d.

phase1.d The design found from Phase I of the ACE algorithm.

phase2.d The design found from Phase II of the ACE algorithm.

phase1.trace A vector containing the evaluations of the approximate expected utility of the
current design at each stage of Phase I of the ACE algorithm. This can be used
to assess convergence.

phase2.trace A vector containing the evaluations of the approximate expected utility of the
current design at each stage of Phase II of the ACE algorithm. This can be used
to assess convergence.

B The argument B.

Q The argument Q.

N1 The argument N1.

N2 The argument N2.

glm This will be FALSE.

nlm If the object is a result of a direct call to acenlm then this is TRUE.

criterion If the object is a result of a direct call to acenlm then this is the argument
criterion.

method If the object is a result of a direct call to acenlm then this is the argument method.

prior If the object is a result of a direct call to aceglm then this is the argument prior.

formula If the object is a result of a direct call to acenlm then this is the argument
formula.

time Computational time (in seconds) to run the ACE algorithm.

binary The argument binary. Will be FALSE for the utility functions currently imple-
mented.

22 acenlm

d The terminal design (pacenlm only).

eval If deterministic = "MC", a vector containing n.assess approximations to the
expected utility for the terminal design (pacenlm only).
If deterministic = "quadrature", a scalar giving the approximate expected
utility for the terminal design (pacenlm only).

final.d A list of the same length as the argument start.d, where each element is the
final design (i.e. phase2.d) for each repetition of the ACE algorithm (pacenlm
only).

besti A scalar indicating which repetition of the ACE algorithm resulted in the termi-
nal design (pacenlm only).

Note

These are wrapper functions for ace and pace.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Chaloner, K. & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science,
10, 273-304.

Gotwalt, C. M., Jones, B. A. & Steinberg, D. M. (2009). Fast computation of designs robust to
parameter uncertainty for nonlinear settings. Technometrics, 51, 88-95.

Meyer, R. & Nachtsheim, C. (1995). The coordinate exchange algorithm for constructing exact
optimal experimental designs. Technometrics, 37, 60-69.

Monahan, J. and Genz, A. (1997). Spherical-radial integration rules for Bayesian computation,”
Journal of the American Statistical Association, 92, 664–674.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

See Also

ace, aceglm, pace, paceglm.

Examples

This example uses aceglm to find a Bayesian D-optimal design for a
compartmental model with 6 runs 1 factor. The priors are
those used by Overstall & Woods (2017). The design space for each
coordinate is [0, 24] hours.

set.seed(1)
Set seed for reproducibility.

n<-6

acenlm 23

Specify the sample size (number of runs).

start.d<-matrix(24 * randomLHS(n = n, k = 1), nrow = n, ncol = 1,
dimnames = list(as.character(1:n), c("t")))
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.

low<-c(0.01884, 0.298, 21.8)
upp<-c(0.09884, 8.298, 21.8)
Lower and upper limits of the support of the uniform prior distributions. Note that the prior
for the third element is a point mass.

prior<-function(B){
out<-cbind(runif(n = B, min = low[1], max = upp[1]), runif(n = B, min = low[2],max = upp[2]),
runif(n = B, min = low[3], max = upp[3]))
colnames(out)<-c("a", "b", "c")
out}

Create a function which specifies the prior. This function will return a
B by 3 matrix where each row gives a value generated from the prior
distribution for the model parameters.

example1<-acenlm(formula = ~ c*(exp(- a * t) - exp(- b * t)), start.d = start.d, prior = prior,
N1 = 1, N2 = 0, B = c(1000, 1000), lower = 0, upper = 24, method = "MC")
Call the acenlm function which implements the ACE algorithm requesting
only one iteration of Phase I and zero iterations of Phase II. The Monte
Carlo sample size for the comparison procedure (B[1]) is set to 1000.

example1
Print out a short summary.

#Non Linear Model
#Criterion = Bayesian D-optimality
#Formula: ~c * (exp(-a * t) - exp(-b * t))
#Method: MC
#
#B: 1000 1000
#
#Number of runs = 6
#
#Number of factors = 1
#
#Number of Phase I iterations = 1
#
#Number of Phase II iterations = 0
#
#Computer time = 00:00:00

example1$phase2.d
Look at the final design.

t
#1 19.7787011

24 aceobjects

#2 2.6431912
#3 0.2356938
#4 8.2471451
#5 1.4742319
#6 12.7062270

prior2 <- list(support = cbind(rbind(low, upp)))
colnames(prior2$support) <- c("a", "b", "c")
example2 <- acenlm(formula = ~ c * (exp(- a * t) - exp(- b *t)), start.d = start.d,
prior = prior2, lower = 0, upper = 24, N1 = 1, N2 = 0)
Call the acenlm function with the default method of "quadrature"

example2$phase2.d
Final design

t
#1 0.5167335
#2 2.3194434
#3 1.5365409
#4 8.2471451
#5 21.9402670
#6 12.7062270

utility <- utilitynlm(formula = ~c * (exp(- a * t) - exp(- b *t)), prior = prior,
desvars = "t", method = "MC")$utility

create a utility function to compare designs

mean(utility(example1$phase1.d, B = 20000))
#[1] 12.13773
mean(utility(example2$phase1.d, B = 20000))
#[1] 11.19745
Compare the two designs using the Monte Carlo approximation

aceobjects Print and Summary of ace and pace Objects

Description

These functions print and summarise objects of class "ace" or "pace".

Usage

S3 method for class 'ace'
print(x, ...)
S3 method for class 'ace'
summary(object, ...)

S3 method for class 'pace'
print(x, ...)
S3 method for class 'pace'
summary(object, ...)

assess 25

Arguments

x An object of class "ace" or "pace".
object An object of class "ace" or "pace".
... Arguments to be passed to and from other methods.

Value

If the object is a result of a direct call to aceglm, acenlm, paceglm, or pacenlm, then the argument
criterion will be printed, otherwise the statement User-defined utility will be printed.

Also printed are the number of repetitions ("pace" objects only), runs, factors, Phase I and II
iterations of the ACE algorithm and the computational time required.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Note

For examples see ace, aceglm, and acenlm.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

See Also

ace, aceglm, acenlm, pace, paceglm, pacenlm.

assess Compares two designs under the approximate expected utility

Description

Calculates approximations to the expected utility for two designs.

Usage

assess(d1, d2, ...)

S3 method for class 'ace'
assess(d1, d2, B = NULL, n.assess = 20, relative = TRUE, ...)

S3 method for class 'pace'
assess(d1, d2, B = NULL, n.assess = 20, relative = TRUE, ...)

26 assess

Arguments

d1, d2 d1 should be an object of class "ace" or "pace" and d2 should be an object of
class "ace", "pace" or "matrix".

B An optional argument for controlling the approximation to the expected utility
(see ace, aceglm and acenlm). If left unspecified, the value is inherited from
the argument d1.

n.assess If d1 was generated from a call to (p)ace with argument deterministic =
FALSE or from a call to (p)aceglm or (p)acenlm with argument method being
"MC", then n.assess is an optional argument giving the number of evaluations
of the stochastic approximation to the expected utility.

relative An optional argument, for when d1 was generated as a call to (p)aceglm or
(p)acenlm with argument criterion being "A", "D" or "E", controlling whether
the measure of relative efficiency is calculated for d1 relative to d2 (TRUE; the
default) or for d2 relative to d1 (FALSE).

... Arguments to be passed to and from other methods.

Details

In the case of when d1 was generated from a call to (p)ace with argument deterministic =
FALSE or from a call to (p)aceglm or (p)acenlm with argument method being "MC", n.assess
evaluations of the stochastic approximation to the expected utility will be calculated for each of
the designs from d1 and d2. Otherwise, one evaluation of the deterministic approximation to the
expected utility will be calculated for each of the designs from d1 and d2.

In the case when d1 was generated as a call to (p)aceglm or (p)acenlm with argument criterion
being "A", "D" or "E", the relative D-, E-, or A-efficiency of the two designs will be calculated. The
direction of the relative efficiency can be controlled by the relative argument.

Value

The function will an object of class "assess" which is a list with the following components:

U1 In the case of when d1 was generated from a call to (p)ace with argument
deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argu-
ment method being "MC", U1 will be a vector of n.assess evaluations of the
stochastic approximation to the expected utility for design d1. Otherwise, U1
will be a scalar of one evaluation of the deterministic approximation to the ex-
pected utility for design d1.

U2 In the case of when d1 was generated from a call to (p)ace with argument
deterministic = FALSE or from a call to (p)aceglm or (p)acenlm with argu-
ment method being "MC", U2 will be a vector of n.assess evaluations of the
stochastic approximation to the expected utility for design d2. Otherwise, U2
will be a scalar of one evaluation of the deterministic approximation to the ex-
pected utility for design d2.

eff In the case when d1 was generated as a call to (p)aceglm or (p)acenlm with
argument criterion being "A", "D" or "E", eff is a scalar of the relative D-,
E-, or A-efficiency of the two designs. Otherwise it will be NULL.

assessobjects 27

d1 The argument d1.

d2 The argument d2.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

See Also

ace, pace, aceglm, acenlm, paceglm, pacenlm.

Examples

This example involves finding a Bayesian D-optimal design for a
compartmental model with n = 18 runs. There are three parameters.
Two parameters have uniform priors and the third has a prior
point mass.

n <- 18
k <- 1
p <- 3
set.seed(1)
start.d <- randomLHS(n = n, k = k) * 24
colnames(start.d) <- c("t")

a1<-c(0.01884, 0.298)
a2<-c(0.09884, 8.298)

prior <- list(support = cbind(rbind(a1, a2), c(21.8, 21.8)))
colnames(prior[[1]]) <- c("theta1", "theta2", "theta3")

example <- acenlm(formula = ~ theta3 * (exp(- theta1 * t) - exp(- theta2 * t)),
start.d = start.d, prior = prior, lower = 0, upper = 24, N1 = 2, N2 = 0)

Compute efficiency of final design compared to starting design.
assess(d1 = example, d2 = start.d)

Should get

Approximate expected utility of d1 = 15.40583
Approximate expected utility of d2 = 11.26968
Approximate relative D-efficiency = 396.9804%

assessobjects Print and Summary of assess Objects

28 overstallwoods

Description

These functions print and summarise objects of class "assess".

Usage

S3 method for class 'assess'
print(x, ...)
S3 method for class 'assess'
summary(object, ...)

Arguments

x An object of class "assess".

object An object of class "assess".

... Arguments to be passed to and from other methods.

Value

These functions both provide a print out with the following information.

In the case of when d1 was generated from a call to (p)ace with argument deterministic = FALSE
or from a call to (p)aceglm or (p)acenlm with argument method being "MC", then the mean and
standard deviation of the n.assess evaluations of the approximate expected utility for each of the
designs d1 and d2 will be printed.

Otherwise, one evaluation of the deterministic approximation to the expected utility will be printed
for each of the designs from d1 and d2. In the case when d1 was generated as a call to (p)aceglm
or (p)acenlm with argument criterion being "A", "D" or "E", the relative D-, E-, or A-efficiency
of the two designs will be also be printed.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

See Also

assess

overstallwoods Functions implementing the examples of Overstall & Woods (2017).

Description

This suite of functions implement the examples in Overstall & Woods (2017).

overstallwoods 29

Usage

######## Compartmental model #################################

utilcomp18bad(d, B)
optdescomp18bad(type = "ACE")
utilcomp15bad(d, B)
optdescomp15bad()
utilcomp15sig(d, B)
optdescomp15sig()
utilcomp15sigDRS(d, B)
optdescomp15sigDRS()

######## Logistic regression model ###########################

utillrbad(d, B)
optdeslrbad(n, type = "ACE")
utillrsig(d, B)
inideslrsig(n, rep)
optdeslrsig(n)

utilhlrbad(d, B)
optdeshlrbad(n)
utilhlrsig(d, B)
inideshlrsig(n, rep)
optdeshlrsig(n)

utillrbaa(d, B)
optdeslrbaa(n)
utillrnsel(d, B)
inideslrnsel(n, rep)
optdeslrnsel(n)

optdeshlrbaa(n)
utilhlrbaa(d, B)
utilhlrnsel(d, B)
inideshlrnsel(n, rep)
optdeshlrnsel(n)

######## Beetle mortality experiment #########################

utilbeetle(d, B)
optdesbeetle(n)

######## Linear model ##

utillinmod(d, B)
optdeslinmod(n, type = "ACE")

30 overstallwoods

##

Arguments

d An n by k matrix specifying the design matrix, where n and k denote the number
of runs and factors, respectively. See Details and Value for the values that n and
k can take for each of the examples. Each element of d is scaled to the interval
[-1,1].

n The number of runs ins the experiment.

rep A scalar integer in the set {1, . . . , 20} specifying the initial design.

B A scalar integer specifying the Monte Carlo sample size.

type An optional character argument specifying which design to return.
For optdeslrbad, possible values are c("ACE","Gotwalt","Atkinson"). If
"ACE" (the default) then the design found by the ACE algorithm will be returned.
If "Gotwalt" then the design published in Gotwalt et al (2009) is returned. If
"Atkinson" then the design found by Atkinson et al (1993) is returned.
For optdeslinmod, possible values are c("ACE","BoxDraper"). If "ACE" (the
default) then the design found by the ACE algorithm will be returned. If "BoxDraper"
then the true optimal design, as found by Box & Draper (1971), will be returned.

Details

This section provides details on the examples considered and the functions implemented in acebayes.

Compartmental model

Compartmental models are used in Pharmokinetics to study how materials flow through an organ-
ism. A drug is administered to an individual or animal and then the amount present at a certain body
location is measured at a set of n pre-determined sampling times (in hours). There is one design
variable: sampling time. Therefore the design matrix d is an n by 1 matrix with elements controlling
the n sampling times, i.e. the number of factors is k=1.

In Overstall & Woods (2017), two different compartmental model examples are considered. The
first (in the Supplementary Material) comes from Atkinson et al (1993) and Gotwalt et al (2009)
where there are n = 18 sampling times and interest lies in finding a Bayesian D-optimal design. The
functions whose name includes "comp18" refer to this example.

The second example (in Section 3.2) comes from Ryan et al (2014), where there are n = 15 sampling
times and the ultimate interest lies in finding an optimal design under the Shannon information gain
utility. Also considered is the Bayesian D-optimal design. The functions whose name includes
"comp15" refer to this example. Note that Ryan et al (2014) used a dimension reduction scheme
(DRS) to find optimal designs. The function whose name is suffixed by "DRS" refer to this situation.

Logistic regression model

In Section 3.3 of Overstall & Woods (2017), a first-order logistic regression model in k = 4 fac-
tors and n runs is considered. Woods et al (2006) and Gotwalt et al (2009) considered generating
Bayesian D-optimal designs for n = 16 and n = 48. Overstall & Woods (2017) extended this exam-
ple by considering Bayesian A-optimal, Shannon information gain (SIG) and negative squared error
loss (NSEL) utility functions, a range of number of runs from 6 to 48, and "random effects" to form
a hierarchical logistic regression model.

overstallwoods 31

Beetle mortality experiment

Overstall & Woods (2017, Section 3.4) considers generating an optimal design for a follow-up
experiment. The original design and data (Bliss, 1935) involves administering different doses of
poison to N = 8 groups of beetles. The number of beetles that die in each group are recorded. Six
different models are considered formed from the combination of three link functions and two linear
predictors (following the analysis of O’Hagan & Forster, 2004). Interest lies in the quantity known
as lethal dose 50 (LD50) which is the dose required to kill 50% of the beetles and is a function of
the model parameters for a given model. Consider finding an optimal design for estimating LD50
under the negative squared error loss (NSEL) function for n new doses of poison (i.e. k = 1 factor).
The prior distribution is equivalent to the posterior distribution arising from the original data and
includes model uncertainty.

Linear model

In the supplementary material, Overstall & Woods (2017) considers finding D-optimal designs for
a second-order (i.e. k = 2) response surface in n=6,7,8,9 runs. Note that the D-optimal design
is equivalent to the optimal design under Shannon information gain and a non-informative prior
distribution.

The expected utility function in this case is available in closed form, i.e. it does not require approxi-
mation. Box & Draper (1971) found optimal designs analytically for the number of runs considered
here. Overstall & Woods (2017) use this example to demonstrate the efficacy of the ACE algorithm.

Value

Compartmental model

For the example in the Supplementary Material;

• The function utilcomp18bad will return a vector of length B where each element is the value
of the Bayesian D-optimal utility function (i.e. the log determinant of the Fisher information
matrix) evaluated at a sample of size B generated from the prior distribution of the model
parameters.

• The function optdescomp18bad will return an 18 by 1 matrix giving the optimal design (spec-
ified by the argument type). The elements will be scaled to be in the interval [-1, 1], i.e. a -1
corresponds to a sampling times of 0 hours, and 1 corresponds to a time of 24 hours.

For the example in Section 3.2;

• The function utilcomp15bad will return a vector of length B where each element is the value
of the Bayesian D-optimal utility function (i.e. the log determinant of the Fisher information
matrix) evaluated at a sample of size B generated from the prior distribution of the model
parameters.

• The function optdescomp15bad will return an 15 by 1 matrix giving the optimal design (found
using ACE) under Bayesian D-optimality. The elements will be scaled to be in the interval
[-1, 1], i.e. a -1 corresponds to a sampling times of 0 hours, and 1 corresponds to a time of 24
hours.

• The function utilcomp15sig will return a vector of length B where each element is the value
of the SIG utility function evaluated at a sample of size B generated from the joint distribution
of model parameters and unobserved responses.

32 overstallwoods

• The function optdescomp15sig will return an 18 by 1 matrix giving the optimal design (found
using ACE) under the SIG utility. The elements will be scaled to be in the interval [-1, 1], i.e.
a -1 corresponds to a sampling times of 0 hours, and 1 corresponds to a time of 24 hours.

• The function utilcomp15sigDRS will return a vector of length B where each element is the
value of the SIG utility function (where a DRS has been used) evaluated at a sample of size
B generated from the joint distribution of model parameters and unobserved responses. Here
the Beta DRS (see Overstall & Woods, 2017) has been used so d should be a 2 by 1 matrix
containing the positive beta parameters.

• The function optdescomp15sigDRS will return a 2 by 1 matrix giving the optimal design
(found using ACE) under the SIG utility, where a DRS has been used. The elements corre-
spond to the parameters of a beta distribution.

Logistic regression model

A function whose name includes "lr" refers to standard logistic regression, whereas "hlr" refers
to hierarchical logistic regression. Under standard logistic regression the possible values for the
argument n can be any even integer between 6 and 48. For hierarchical logistic regression, n can be
any integer divisible by 6 between 12 and 48. The function name also indicates the utility function:

• "bad" Bayesian D-optimal

• "baa" Bayesian A-optimal

• "sig" Shannon information gain

• "nsel" Negative squared error loss

The functions prefixed by "util" will return a vector of length B where each element is the util-
ity function evaluated at a sample generated from the prior distribution of model parameters (for
Bayesian D- and A-optimality) or the joint distribution of model parameters and unobserved re-
sponses (for SIG and NSEL).

The functions prefixed by "optdes" will return an n by k = 4 matrix giving the optimal design found
by ACE. The designs given by this function are those reported on in Overstall & Woods (2017). The
function optdeslrbad will also return designs (for n = 16, 48) found by Woods et al (2006) and
Gotwalt et al (2009) by specifying the type argument appropriately.

The functions prefixed by "inides" will return an n by k = 4 matrix giving an initial design for ACE
to find the optimal designs under the SIG and NSEL utility functions. These are 20 designs found
using ACE under approximations to the Bayesian A- and D-optimal utility functions, respectively.
The argument rep specifies which of these 20 designs to use.

Beetle mortality experiment

The function utilbeetle will return a vector of length B where each element is the value of the
utility function for a sample generated from the joint distribution of the model parameters, model
and unobserved responses.

The function optdesbeetle will return an n by 1 matrix giving the optimal design under the NSEL
utility function (found using ACE) for estimating the LD50. The elements will be scaled to be in
the interval [-1, 1], where -1 corresponds to a dose of 1.6907, 0 to a dose of 1.7873 and 1 to a dose
of 1.8839. The designs given by this function are those reported in Overstall & Woods (2017) for n
= 1, . . . , 10.

Linear model

overstallwoods 33

The function utillinmod will return a vector of length B where each element is a realisation of a
stochastic approximation to the expected utility.

The function optdeslinmod will return an n by 2 matrix giving the D-optimal design (specified by
the argument type). If type = "ACE", the designs returned by this function are those found using
the ACE algorithm and are reported in the Supplementary Material of Overstall & Woods (2017),
and if type = "BoxDraper", the designs returned are the exact D-optimal designs.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Atkinson, A., Chaloner, K., Herzberg, A., & Juritz, J. (1993). Experimental Designs for Properties
of a Compartmental Model. Biometrics, 49, 325-337.

Bliss, C. (1935). The calculation of the dosage-mortality curve. Annals of Applied Biology, 22,
134-167.

Box, M. & Draper, N. (1971). Factorial designs, the |FTF | criterion and some related matters.
Techometrics, 13, 731-742.

Gotwalt, C., Jones, B. & Steinberg, D. (2009). Fast Computation of Designs Robust to Parameter
Uncertainty for Nonlinear Settings. Technometrics, 51, 88-95.

O’Hagan, A, & Forster, J.J. (2004). Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian
Inference. 2nd edition. John Wiley & Sons.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

Ryan, E., Drovandi, C., Thompson, M., Pettitt, A. (2014). Towards Bayesian experimental design
for nonlinear models that require a large number of sampling times. Computational Statistics and
Data Analysis, 70, 45-60.

Woods, D.C., Lewis, S., Eccleston, J., Russell, K. (2006). Designs for Generalized Linear Models
With Several Variables and Model Uncertainty. Technometrics, 48, 284-292.

See Also

ace, pace.

Examples

######## Compartmental model #################################

set.seed(1)
Set seed for reproducibility

d<-optimumLHS(n = 18, k = 1) * 2 - 1
Generate an 18-run design.

u<-utilcomp18bad(d = d, B = 20000)
Calculate the D-optimal utility function for a

34 overstallwoods

sample of size 20000.

u[1:5]
Look at first 5 elements.
#[1] 14.283473 10.525390 4.126233 7.061498 12.793245

d0<-optdescomp18bad()
u0<-utilcomp18bad(d = d0, B = 20000)
Optimal design found by ACE and calculate the D-optimal
utility function for a sample of size 20000.

u0[1:5]
Look at first 5 elements.
#[1] 15.04721 15.37141 16.84287 14.06750 14.01523

mean(u)
mean(u0)
Calculate expected Bayesian D-optimal utility.

d<-matrix(runif(2), ncol = 1)
Generate two beta parameters.

u<-utilcomp15sigDRS(d = d, B = 5)
u
Calculate the SIG utility function for a
sample of size 5.
#[1] 17.652044 4.878998 19.919559 22.017760 5.600473

######## Logistic regression model ###########################

set.seed(1)
Set seed for reproducibility

d<-optimumLHS(n = 16,k = 4) * 2 - 1
Generate an 16-run design.

u<-utillrbad(d = d, B = 20000)
Calculate the D-optimal utility function for a
sample of size 20000.

u[1:5]
Look at first 5 elements.
#[1] -11.630683 -5.748912 -9.554413 -10.150132 -7.940938

d0<-optdeslrbad(16)
u0<-utillrbad(d = d0, B = 20000)
Optimal design found by ACE and calculate the D-optimal
utility function for a sample of size 20000.

u0[1:5]
Look at first 5 elements.
#[1] -4.644116 -2.411431 -4.999891 -2.906558 -2.282687

overstallwoods 35

mean(u)
mean(u0)
Calculate expected Bayesian D-optimal utility.
#[1] -9.38253
#[1] -2.992012

######## Beetle mortality experiment #########################

set.seed(1)
Set seed for reproducibility

d<-optimumLHS(n = 10, k = 1)*2-1
Generate a design of 10 doses with elements in [-1, 1]

utilbeetle(d = d, B = 5)
Calculate the utility function for a sample of size 5.

#-4.720491e-06 -1.198955e-05 -1.681380e-05 -3.123498e-06 -1.412722e-05

d0<-optdesbeetle(10)
d0
Print out optimal design from Overstall & Woods (2017) for 10 doses

0.5*(d0 + 1)*(1.8839 - 1.6907) + 1.6907
On original scale.
[,1]
[1,] 1.769957
[2,] 1.769520
[3,] 1.768641
[4,] 1.777851
[5,] 1.768641
[6,] 1.769520
[7,] 1.777851
[8,] 1.765997
[9,] 1.768641
#[10,] 1.768641

######## Linear model ##

set.seed(1)
Set seed for reproducibility

d<-cbind(rep(c(-1, 0, 1), each = 3), rep(c(-1, 0, 1), 3))
Create a 9-run design which is the true D-optimal design

utillinmod(d = d, B = 5)
Calculate the approximation to the true expected D-optimal utility
function for a sample of size 5.

#[1] 7.926878 8.736976 7.717704 10.148613 8.882840

d0<-optdeslinmod(9)
Optimal D-optimal design found using ACE

36 plot.ace

X<-cbind(1, d, d^2, d[,1] * d[,2])
X0<-cbind(1, d0, d0^2, d0[,1] * d0[,2])
Calculate model matrices under both designs

detX<-determinant(t(X) %*% X)$modulus[1]
detX0<-determinant(t(X0) %*% X0)$modulus[1]
Calculate true expected D-optimal utility function for both designs

100 * exp(0.2 * (detX0 - detX))
Calculate D-efficiency of ACE design.

99.93107

plot.ace Plot ace Objects

Description

This function plots objects of class "ace" or "pace" .

Usage

S3 method for class 'ace'
plot(x, ...)

S3 method for class 'pace'
plot(x, ...)

Arguments

x An object of class "ace" or "pace".

... Arguments to be passed to and from other methods.

Value

A trace plot of the current evaluations of the approximate expected utility function. Separate lines
are produced for the traces from Phases I and II of the ACE algorithm.

For objects of class "pace", the evaluations of the approximate expected utility function are from
the repetition which resulted in the terminal design (see pace, paceglm, and pacenlm for more
details).

These trace plots can be used to assess convergence. See Overstall & Woods (2017) for more details.

Note

For an example see ace.

plot.assess 37

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

See Also

ace, pace

plot.assess Plot assess Objects

Description

This function plots objects of class "assess".

Usage

S3 method for class 'assess'
plot(x, ...)

Arguments

x An object of class "assess".

... Arguments to be passed to and from other methods.

Value

In the case of when d1 was generated from a call to (p)ace with argument deterministic = FALSE
or from a call to (p)aceglm or (p)acenlm with argument method being "MC", then boxplots of the
n.assess evaluations of the approximate expected utility for each of the designs d1 and d2 will be
produced. Otherwise, a plot is not meaningful and a warning will be produced.

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

See Also

assess

38 utilities

utilities Approximate expected utility function for generalised linear models
and non-linear regression models

Description

Generates an approximate utility function for generalised linear models and non-linear regression
models.

Usage

utilityglm(formula, family, prior,
criterion = c("D", "A", "E", "SIG", "NSEL", "SIG-Norm", "NSEL-Norm"),
method = c("quadrature", "MC"), nrq)

utilitynlm(formula, prior, desvars, criterion = c("D", "A", "E", "SIG", "NSEL"),
method = c("quadrature", "MC"), nrq)

Arguments

formula An argument providing a symbolic description of the model.
For utilityglm, an object of class "formula": a symbolic description of the
model.
For utilitynlm, an object of class "formula": a symbolic description of the
model. The terms should correspond to the argument prior

family For utilityglm, a description of the error distribution and link function to be
used in the model. This can be a character string naming a family function,
a family function or the result of a call to a family function. (See family for
details of family functions.)

prior An argument specifying the prior distribution.
For method = "MC", a function with one argument: B; a scalar integer. This func-
tion should return a B by p matrix (p+1 for criterion = "SIG" or criterion =
"NSEL"), with p the number of model parameters, containing a random sample
from the prior distribution of the parameters. The value of p should correspond
to the number of terms specified by the formula argument. For utilitynlm, the
column names must match the names of parameters in the formula argument.
For utilitynlm, if criterion="SIG", criterion="NSEL", criterion="SIG-Norm"
or criterion="NSEL-Norm" then an extra column called sig2 should be in-
cluded with a sample from the error variance.
For method = "quadrature", a list specifying a normal or uniform prior for the
model parameters. For a normal prior distribution, the list should have named
entries mu and sigma2 specifying the prior mean and variance-covariance ma-
trix. The prior mean may be specified as a scalar, which will then be replicated
to form an vector of common prior means, or a vector of length p. The prior
variance-covariance matrix may be specified as either a scalar common variance
or a vector of length p of variances (for independent prior distributions) or as a p

utilities 39

by p matrix. For utilitynlm, the names attribute of mu must match the names
of the parameters in the formula argument. For a uniform prior distribution,
the list should have a named entry support, a 2 by p matrix with each column
giving the lower and upper limits of the support of the independent continuous
uniform distribution for the corresponding parameter. For utilitynlm, the col-
umn names of support must match the names of parameters in the formula
argument.

desvars For utilitynlm, a character vector listing the design variables that appear in
the argument formula.

criterion An optional character argument specifying the utility function. There are cur-
rently seven utility functions implemented as follows:

1. pseudo-Bayesian D-optimality (criterion = "D");
2. pseudo-Bayesian A-optimality (criterion = "A");
3. pseudo-Bayesian E-optimality (criterion = "E").
4. Shannon information gain with Monte Carlo (MC) approximation to marginal

likelihood (criterion = "SIG");
5. Shannon information gain with normal-based Laplace approximation to

marginal likelihood (criterion = "SIG-Norm", only for utilityglm));
6. negative squared error loss with importance sampling approximation to

posterior mean (criterion = "NSEL");
7. negative squared error loss with normal-based approximation to posterior

mean (criterion = "NSEL-Norm", only for utilityglm)) ;

The default value is "D" denoting pseudo-Bayesian D-optimality. See Details
for more information.

method An optional character argument specifying the method of approximating the
expected utility function. Current choices are method = "quadrature" for a de-
terministic quadrature approximation and method = "MC" for a stochastic Monte
Carlo approximation. The first of these choices is only available when the ar-
gument criterion = "A", "D" or "E". The second choice is available for all
possible values of the argument criterion. If left unspecified, the argument
defaults to "quadrature" for criterion = "A", "D" or "E" and to "MC" other-
wise. See Details for more information.

nrq For method = "quadrature", a vector of length two specifying the number of
radial abscissas (nrq[1]) and quasi-random rotations (nrq[2]) required for the
implemented quadrature scheme; see Details for more information. If left un-
specified, the default value is c(2, 8).

Details

Two utility functions are implemented.

1. Shannon information gain (SIG)
The utility function is

uSIG(d) = π(θ|y, d)− π(θ),

where π(θ|y, d) and π(θ) denote the posterior and prior densities of the parameters θ, respec-
tively.

40 utilities

2. Negative squared error loss (NSEL)
The utility function is

uNSEL(d) = − (θ − E(θ|y, d))T (θ − E(θ|y, d)) ,

where E(θ|y, d) denotes the posterior mean of θ.

In both cases the utility function is not available in closed form due to the analytical intractability
of either the posterior distribution (for SIG) or the posterior mean (for NSEL). The acebayes pack-
age implements two approximations to both utility functions. If criterion = "SIG" or criterion
= "NSEL" then sampling-based Monte Carlo or importance sampling approximations will be em-
ployed. This was the original approach used by Overstall & Woods (2017). If criterion =
"SIG-Norm" or criterion = "NSEL-Norm" then approximations based on approximate normality
of the posterior (Overstall et al., 2017) will be used.

The normal approximation to the posterior can be taken further leading to the approximation by
some scalar function of the Fisher information matrix, I(θ; d), which only depends on θ (Chaloner
& Verdinelli, 1995). In the case of SIG, the approximate utility is given by

uD(d) = log |I(θ; d)|,

and the resulting design is typically called pseudo-Bayesian D-optimal. For NSEL, the approximate
utility is given by

uA(d) = −tr
{
I(θ; d)−1

}
with the resulting design termed pseudo-Bayesian A-optimal. These designs are often used un-
der the frequentist approach to optimal experimental design and so to complete the usual set, the
following utility for finding a pseudo-Bayesian E-optimal design is also implemented:

uE(d) = min e (I(θ; d)) ,

where e() denotes the function that calculates the eigenvalues of its argument.

The expected utilities can be approximated using Monte Carlo methods (method = "MC" for all
criteria) or using a deterministic quadrature method (method = "quadrature", implemented for the
D, A and E criteria). The former approach approximates the expected utility via sampling from
the prior. The latter approach uses a radial-spherical integration rule (Monahan and Genz, 1997)
and B[1] specifies the number, nr, of radial abscissas and B[2] specifies the number, nq , of random
rotations. Larger values of nr will produce more accurate, but also more computationally expensive,
approximations. See Gotwalt et al. (2009) for further details.

For utilityglm, note that the utility functions for SIG and NSEL are currently only implemented
for logistic regression, i.e. family = binomial, or Poisson regression, i.e. family = poisson(link
= "log"), whereas the utility functions for pseudo-Bayesian designs are implemented for generic
GLM families.

For more details on the ACE algorithm, see Overstall & Woods (2017).

Value

The function will return a list with the following components:

utility The utility function resulting from the choice of arguments.

utilities 41

Author(s)

Antony M. Overstall <A.M.Overstall@soton.ac.uk>, David C. Woods, Maria Adamou & Dami-
anos Michaelides

References

Chaloner, K. & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science,
10, 273-304.

Gotwalt, C. M., Jones, B. A. & Steinberg, D. M. (2009). Fast computation of designs robust to
parameter uncertainty for nonlinear settings. Technometrics, 51, 88-95.

Monahan, J. and Genz, A. (1997). Spherical-radial integration rules for Bayesian computation,”
Journal of the American Statistical Association, 92, 664-674.

Overstall, A.M. & Woods, D.C. (2017). Bayesian design of experiments using approximate coordi-
nate exchange. Technometrics, 59, 458-470.

See Also

aceglm, acenlm, paceglm, pacenlm.

Examples

1. This example uses utilityglm to generate the pseudo-Bayesian D-optimality
approximate expected utility function using a Monte Carlo approximation.

low<-c(-3, 4, 5, -6, -2.5)
upp<-c(3, 10, 11, 0, 3.5)
Lower and upper limits of the uniform prior distributions.

prior<-function(B){
t(t(6*matrix(runif(n=5*B),ncol=5))+low)}
Create a function which specifies the prior. This function will return a
B by 5 matrix where each row gives a value generated from the prior
distribution for the model parameters.

ex <- utilityglm(formula = ~x1+x2+x3+x4, family = binomial, prior = prior, method = "MC")

set.seed(1)
Set seed for reproducibility.

n<-6
Specify the sample size (number of runs).

start.d<-matrix(2 * randomLHS(n = n,k = 4) - 1,nrow = n,ncol = 4,
dimnames = list(as.character(1:n),c("x1", "x2", "x3", "x4")))
Generate an initial design of appropriate dimension. The initial design is a
Latin hypercube sample.

ex$utility(d = start.d, B = 10)
Evaluate resulting approximate utility. Should get:

42 utilities

#[1] -13.98143 -17.07772 -19.88988 -22.40720 -15.27411 -15.02717 -16.17253 -18.66600 -13.75118
#[10] -21.83820

2. This example uses utilitynlm to generate the psuedo-Bayesian A-optimality expected utility
function using a quadrature approximation

low<-c(0.01884, 0.298, 21.8)
upp<-c(0.09884, 8.298, 21.8)
Lower and upper limits of the uniform prior distributions. Note that the prior
for the third element is a point mass.

prior2 <- list(support = cbind(rbind(low, upp)))
colnames(prior2$support) <- c("a", "b", "c")
Specify a uniform prior with ranges given by low and upp

ex2 <- utilitynlm(formula = ~ c * (exp(- a * t) - exp(- b *t)), prior = prior2,
desvars = "t")

n <- 6
start.d <- matrix(24 * randomLHS(n = n, k = 1), nrow = n)
colnames(start.d) <- "t"
ex2$utility(d = start.d)
-13.17817

Index

∗ package
acebayes-package, 2

ace, 2, 3, 5, 15, 22, 25–27, 33, 36, 37
acebayes (acebayes-package), 2
acebayes-package, 2
aceglm, 2, 3, 10, 22, 25–27, 41
acenlm, 2, 3, 15, 17, 25–27, 41
aceobjects, 24
acephase1 (ace), 5
acephase2 (ace), 5
assess, 25, 28, 37
assessobjects, 27

family, 11, 38

inideshlrnsel (overstallwoods), 28
inideshlrsig (overstallwoods), 28
inideslrnsel (overstallwoods), 28
inideslrsig (overstallwoods), 28

mclapply, 7, 12, 20

optdesbeetle (overstallwoods), 28
optdescomp15bad (overstallwoods), 28
optdescomp15sig (overstallwoods), 28
optdescomp15sigDRS (overstallwoods), 28
optdescomp18bad (overstallwoods), 28
optdeshlrbaa (overstallwoods), 28
optdeshlrbad (overstallwoods), 28
optdeshlrnsel (overstallwoods), 28
optdeshlrsig (overstallwoods), 28
optdeslinmod (overstallwoods), 28
optdeslrbaa (overstallwoods), 28
optdeslrbad (overstallwoods), 28
optdeslrnsel (overstallwoods), 28
optdeslrsig (overstallwoods), 28
overstallwoods, 28

pace, 2, 3, 15, 22, 25, 27, 33, 36, 37
pace (ace), 5

paceglm, 2, 3, 22, 25, 27, 36, 41
paceglm (aceglm), 10
pacenlm, 2, 3, 15, 25, 27, 36, 41
pacenlm (acenlm), 17
plot.ace, 36
plot.assess, 37
plot.pace (plot.ace), 36
print.ace (aceobjects), 24
print.assess (assessobjects), 27
print.pace (aceobjects), 24

summary.ace (aceobjects), 24
summary.assess (assessobjects), 27
summary.pace (aceobjects), 24

utilbeetle (overstallwoods), 28
utilcomp15bad (overstallwoods), 28
utilcomp15sig (overstallwoods), 28
utilcomp15sigDRS (overstallwoods), 28
utilcomp18bad, 9
utilcomp18bad (overstallwoods), 28
utilhlrbaa (overstallwoods), 28
utilhlrbad (overstallwoods), 28
utilhlrnsel (overstallwoods), 28
utilhlrsig (overstallwoods), 28
utilities, 38
utilityglm (utilities), 38
utilitynlm (utilities), 38
utillinmod (overstallwoods), 28
utillrbaa (overstallwoods), 28
utillrbad (overstallwoods), 28
utillrnsel (overstallwoods), 28
utillrsig (overstallwoods), 28

43

	acebayes-package
	ace
	aceglm
	acenlm
	aceobjects
	assess
	assessobjects
	overstallwoods
	plot.ace
	plot.assess
	utilities
	Index

