Package: acebayes 1.10

acebayes: Optimal Bayesian Experimental Design using the ACE Algorithm

Optimal Bayesian experimental design using the approximate coordinate exchange (ACE) algorithm. See <doi:10.18637/jss.v095.i13>.

Authors:Antony M. Overstall, David C. Woods, Maria Adamou & Damianos Michaelides

acebayes_1.10.tar.gz
acebayes_1.10.zip(r-4.5)acebayes_1.10.zip(r-4.4)acebayes_1.10.zip(r-4.3)
acebayes_1.10.tgz(r-4.4-x86_64)acebayes_1.10.tgz(r-4.4-arm64)acebayes_1.10.tgz(r-4.3-x86_64)acebayes_1.10.tgz(r-4.3-arm64)
acebayes_1.10.tar.gz(r-4.5-noble)acebayes_1.10.tar.gz(r-4.4-noble)
acebayes_1.10.tgz(r-4.4-emscripten)acebayes_1.10.tgz(r-4.3-emscripten)
acebayes.pdf |acebayes.html
acebayes/json (API)

# Install 'acebayes' in R:
install.packages('acebayes', repos = c('https://amo105.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.75 score 1 stars 28 scripts 375 downloads 2 mentions 43 exports 6 dependencies

Last updated 4 years agofrom:ab55851906. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64NOTENov 06 2024
R-4.5-linux-x86_64NOTENov 06 2024
R-4.4-win-x86_64NOTENov 06 2024
R-4.4-mac-x86_64NOTENov 06 2024
R-4.4-mac-aarch64NOTENov 06 2024
R-4.3-win-x86_64NOTENov 06 2024
R-4.3-mac-x86_64NOTENov 06 2024
R-4.3-mac-aarch64NOTENov 06 2024

Exports:aceaceglmacenlmacephase1acephase2assessinideshlrnselinideshlrsiginideslrnselinideslrsigoptdesbeetleoptdescomp15badoptdescomp15sigoptdescomp15sigDRSoptdescomp18badoptdeshlrbaaoptdeshlrbadoptdeshlrnseloptdeshlrsigoptdeslinmodoptdeslrbaaoptdeslrbadoptdeslrnseloptdeslrsigpacepaceglmpacenlmutilbeetleutilcomp15badutilcomp15sigutilcomp15sigDRSutilcomp18badutilhlrbaautilhlrbadutilhlrnselutilhlrsigutilityglmutilitynlmutillinmodutillrbaautillrbadutillrnselutillrsig

Dependencies:comparelhsrandtoolboxRcppRcppArmadillorngWELL

Readme and manuals

Help Manual

Help pageTopics
Optimal Bayesian Experimental Design using the Approximate Coordinate Exchange (ACE) Algorithmacebayes-package acebayes
Approximate Coordinate Exchange (ACE) Algorithmace acephase1 acephase2 pace
Approximate Coordinate Exchange (ACE) Algorithm for Generalised Linear Modelsaceglm paceglm
Approximate Coordinate Exchange (ACE) Algorithm for Non-Linear Modelsacenlm pacenlm
Print and Summary of 'ace' and 'pace' Objectsprint.ace print.pace summary.ace summary.pace
Compares two designs under the approximate expected utilityassess assess.ace assess.pace
Print and Summary of 'assess' Objectsprint.assess summary.assess
Functions implementing the examples of Overstall & Woods (2017).inideshlrnsel inideshlrsig inideslrnsel inideslrsig optdesbeetle optdescomp15bad optdescomp15sig optdescomp15sigDRS optdescomp18bad optdeshlrbaa optdeshlrbad optdeshlrnsel optdeshlrsig optdeslinmod optdeslrbaa optdeslrbad optdeslrnsel optdeslrsig utilbeetle utilcomp15bad utilcomp15sig utilcomp15sigDRS utilcomp18bad utilhlrbaa utilhlrbad utilhlrnsel utilhlrsig utillinmod utillrbaa utillrbad utillrnsel utillrsig
Plot 'ace' Objectsplot.ace plot.pace
Plot 'assess' Objectsplot.assess
Approximate expected utility function for generalised linear models and non-linear regression modelsutilityglm utilitynlm